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1 Introduction and Background

As a black hole gobbles up nearby stars, dust, and unsuspecting experimentalists, its mass,
size, spin, and charge can all change. Their rates of change are all tied together:

dM =
κ

8π
dA+ Ω dJ + Φ dQ. (1.1)

Here, M is the mass of the black hole, κ is its surface gravity at the event horizon, A is the
surface area of the event horizon, Ω is its angular velocity, J is its angular momentum, Φ is
its electrostatic potential, and Q is its electric charge. Black holes pull so strongly that no
mass can ever escape their clutches; that is, their surface area can never decrease: dA ≥ 0.

Physicists noticed a strong analogy between these equations and the laws of thermo-
dynamics. Famously, we now interpret M as the black hole’s total internal energy U , the
quantity S ≡ A

4
as the Bekenstein-Hawking entropy of the black hole, and T ≡ κ

2π
as its

Hawking temperature. Thus black holes obey the second law of thermodynamics (dS ≥ 0),
and the equation above looks a lot like the first law of thermodynamics, with Ω and Φ in-
terpreted as chemical potentials for the particle-number-like quantities J and Q. For now,
set dJ = dQ = 0, so that we’re looking at non-spinning, uncharged black holes. Then,

dM =
κ

2π
d

(
A

4

)
= T dS = dU, dA ≥ 0 ⇐⇒ dS ≥ 0. (1.2)

More recently, it was noticed that the formula above doesn’t look quite right: it’s missing
a work term! One possible proposal is to interpret the cosmological constant Λ, which
determines the background curvature of spacetime, as a gravitational analog of pressure:
P ≡ − Λ

8π
. (The prefactor − 1

8π
is conventional.) We use the black hole’s actual volume as

the volume of the thermodynamic system it defines: V ≡ V . (Warning: throughout this
problem, some SI units may not make sense. This is because we are using so-called “natural
units,” where certain constants are set to exactly one: c = G = ~ = kB = 1.)
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2 THE PROBLEM

2 The Problem

1. The cosmological constant Λ is constant, meaning that dΛ = 0. With this in mind,
which one of P dV or V dP is zero? The one that’s zero can be freely added to T dS in
the first law of thermodynamics in equation (1.2). Do so, keeping everything in terms
of the thermodynamic variables P, V, S, T, U .

2. The resulting expression should be incorrect! What’s wrong with it?

3. To fix things up, we should re-interpret the black hole mass M as one of the three other
thermodynamic potentials. Which one should M be so that our results make sense?

4. Notice that the volume V = V and the entropy S = A
4

are not independent any more
for black holes. Assuming that the black hole’s event horizon is a sphere, find the
relation between them, expressing V in terms of S or vice versa. This provides more
evidence that U = U(S, V ) is not really the right thermodynamic potential to use.

5. We’re about to build a heat engine out of a black hole. But first, prove a key result:
adiabats and isochores must be the same for black holes. (!!!)

6. Use the fact that Q = T∆S along isotherms, together with the results of previous
parts, to compute the efficiency of a black-hole Carnot engine, and confirm that you
get the Carnot efficiency. Marvel at how much quicker this calculation is than the
typical derivation of the Carnot efficiency, and notice that you’ve also inadvertently
also computed the efficiency of the Stirling cycle.

7. Take a look at sections 1 and 2 of this paper: https://arxiv.org/pdf/1404.5982.pdf.
(If you know general relativity, read further!) Thermodynamics is alive and well!

8. In 1974, Stephen Hawking showed that the Hawking temperature is given by T = 1
8πM

.
Determine κ in terms of M , and conclude that small black holes are dangerous.

9. Compute the heat capacity (at constant pressure) of a black hole: what do you find,
and what does it imply about throwing matter into a black hole?

10. Hawking also showed that black holes radiate, losing mass in the process. Conclude
once again that small black holes are more dangerous than large black holes (hint:
what happens to their temperature?).

11. Notice that the existence of Hawking radiation causes M , and hence A, to decrease, in
apparent contradiction to the second law of thermodynamics! Suggest a resolution to
this problem, which begets what is known as the black hole information paradox. Then
give your academic institution of choice a call, and collect instant tenure and fame.
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3 Solutions: Black Hole Heat Engine

The cosmological constant Λ is constant, meaning that dΛ = 0. With this in mind, which one
of P dV or V dP is zero? The one that’s zero can be freely added to T dS in the first law of
thermodynamics in equation (1.2). Do so, keeping everything in terms of the thermodynamic
variables P, V, S, T, U . The resulting expression should be incorrect! What’s wrong with it?

Solution. Since dΛ = 0, we also have

P = − Λ

8π
=⇒ dP = −dΛ

8π
= 0 =⇒ V dP = 0. (3.1)

We are free to add zero to any expression whatsoever, so let’s add it to dM in (1.2) above:

dM = T dS = T dS + 0 = T dS + V dP = dU (wrong!) (3.2)

What just happened? Well, in a desperate attempt to save the claim “dU = T dS” from
being wrong, we added the work-like term V dP (which, happily, is always zero) in the hopes
that this would salvage the thermodynamic identity. Alas, the true thermodynamic identity
is dU = T dS − P dV , and this doesn’t match our result above.

To fix things up, we should re-interpret the black hole mass M as one of the three other
thermodynamic potentials. Which one should M be so that our results make sense?

Solution. Enthalpy! Recall that the correct thermodynamic identity for enthalpy is

dH = T dS + V dP. (3.3)

Matching this to our result above, we find it suggestive to identify dM with dH, and there-
fore (because enthalpy is a function of state) M with H.

Notice that the volume V = V and the entropy S = A
4

are not independent any more
for black holes. Assuming that the black hole’s event horizon is a sphere, find the relation
between them, expressing V in terms of S or vice versa. This provides more evidence that
U = U(S, V ) is not really the right thermodynamic potential to use.

Solution. Recall that the volume of the black hole interior and its entropy are given by

V =
4

3
πR3, S =

A

4
= πR2, (3.4)

where R is the Schwarzschild radius of the black hole. While it’s true that dV/dR = A, we
seek a purely algebraic relation between S and V that doesn’t involve R at all. To that end,
we can do the following manipulation:

V 2/3 =

(
4π

3

)2/3

R2 =⇒ S = πR2 =

(
3

4π

)2/3

πV 2/3. (3.5)
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4 SOLUTIONS: HEAT CAPACITY AND THE SECOND LAW

We’re about to build a heat engine out of a black hole. But first, prove a key result:
adiabats and isochores must be the same for black holes. (!!!)

Solution. This sounds complicated, but it’s not: adiabats are curves where dS = 0, while
isochores are curves where dV = 0. The relation we discovered above shows that whenever
dS = 0, we must also have dV = 0, and vice versa. Thinking physically, if the volume in-
side a spherical black hole is constant, its radius and therefore its area must also be constant.

Use the fact that Q = T∆S along isotherms, together with the results of previous parts,
to compute the efficiency of a black-hole Carnot engine, and confirm that you get the Carnot
efficiency. Marvel at how much quicker this calculation is than the typical derivation of the
Carnot efficiency, and notice that you’ve also inadvertently also computed the efficiency of the
Stirling cycle. Take a look at sections 1 and 2 of this paper: https://arxiv.org/pdf/1404.5982.pdf.
(If you know general relativity, read further!) Thermodynamics is alive and well!

Solution. We are in an excellent position to read sections 1 and 2 of the following paper:
https://arxiv.org/pdf/1404.5982.pdf. Section 2 does the efficiency calculation and also
reveals that the Stirling cycle (isotherms and isochores) is the same as the Carnot cycle
(isotherms and adiabats) for heat engines that use black holes as a working substance.

4 Solutions: Heat Capacity and the Second Law

In 1974, Stephen Hawking showed that the Hawking temperature is given by T = 1
8πM

.
Determine κ in terms of M , and conclude that small black holes are dangerous.

Solution. Let’s relate the surface gravity, temperature, and mass of the black hole:

T =
1

8πM
=

κ

2π
=⇒ κ =

1

4M
. (4.1)

The smaller M is, the smaller its radius will be; the calculation above shows that the gravity
at the “surface” of the black hole will be stronger the smaller the black hole is. Every black
hole contains a singularity where the curvature of spacetime becomes infinite; smaller black
holes pull less strongly, but their event horizons shrink around the singularity faster than
their gravity falls off. Standing at the event horizon of a smaller black hole, you’ll experience
stronger spacetime curvature, and therefore stronger gravity, than if you’d been dropped off
at the event horizon of Sgr A*, the supermassive black hole at the center of our galaxy.

Compute the heat capacity (at constant pressure) of a black hole: what do you find, and
what does it imply about throwing matter into a black hole?

Solution. The heat capacity at constant pressure is given by

CP =

(
∂H

∂T

)
P

=

(
∂M

∂T

)
Λ

, (4.2)
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4 SOLUTIONS: HEAT CAPACITY AND THE SECOND LAW

so it behooves us to find M as a function of T . This is straightforward:

T =
1

8πM
=⇒ M =

1

8πT
=⇒ CP =

∂

∂T

(
1

8πT

)
Λ

= − 1

8πT 2
. (4.3)

Evidently black holes have negative heat capacity! This is absolutely bizarre: they get cooler
when energy is added to the system, and they heat up if energy taken away. By the second
law, dA ≥ 0 prevents this from ever happening, so normally we’d just expect black holes to
get cooler and cooler as the universe progresses. However...

Hawking also showed that black holes radiate, losing mass in the process. Conclude once
again that small black holes are more dangerous than large black holes (hint: what happens
to their temperature?).

Solution. If a black hole radiates, it loses mass, and by T = 1/(8πM), its temperature
rises. It continues to radiate as a perfect blackbody, its temperature rising without bound,
until finally its temperature becomes infinite as it evaporates, boiling itself away and releasing
a huge burst of energy in its last moments. On one hand, we definitely don’t want to be near
a small black hole as this happens. On the other hand, this is a gross violation of dA ≥ 0.

There has been much hand-wringing about what to do about this, and the real story of
the information paradox lies rather deeper. One “quick fix,” proposed by Hawking, was to
modify the definition of S to include the entropy of the radiation let out by the black hole:
S ≡ SBH + Srad. It might be hoped that as dSBH = 1

4
dA falls, dSrad rises to compensate.

Unfortunately, Hawking’s paper showed that Srad ≡ 0: Hawking radiation carries no infor-
mation at all, and has no entropy. This is really where the information paradox comes from:
it is the “generalized entropy” SBH + Srad that seems to violate thermodynamics, and many
physicists have since been looking for a fault in Hawking’s calculation.

Notice that the existence of Hawking radiation causes M , and hence A, to decrease, in
apparent contradiction to the second law of thermodynamics! Suggest a resolution to this
problem, which begets what is known as the black hole information paradox. Then give your
academic institution of choice a call, and collect instant tenure and fame.

“Solution.” It is now believed that Srad 6= 0, and that Hawking radiation somehow encodes
information about the black hole interior as the black hole evaporates. People suspected that
this entropy should come from what are called nonperturbative effects in quantum gravity,
but just two years ago, a milestone paper was published which figured out how to reconstruct
the black hole interior using a tool called the Euclidean gravitational path integral and (sort
of) without resorting to nonperturbative physics. Thus the information paradox has been
“solved” using tools that many had thought were too simplistic or coarse to know about the
full content of the paradox-free theory. There are many caveats: only certain models have
been studied in detail, and it is not yet clear what lessons these new results have to teach
us, nor is the story they tell fully understood.
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